

04 1CGS 01 01 Durée : 5 heures Toutes séries réunies

SESSION 2004

CLASSES DE PREMIERE

MATHEMATIQUES

L'épreuve comporte deux exercices et un problème obligatoires.

Pour l'évaluation, il sera tenu compte de la rigueur de la clarté et de la concision des solutions proposées.

EXERCICE: I

Soit (U_n) , $n \in [1]$, la suite réelle définie par la relation de récurrence

$$U_0 = 1 \text{ et } U_{n+1} = \frac{-1 + 4U_n}{-2 + 4U_n}$$

- 1) Calculer les 4 premières termes, et montrer que la suite est bien définie.
- 2) a) Etablir une relation entre U_{n+2} et U_n
- b) En déduire l'équation de récurrence qui lie 2 termes consécutifs d'indices pairs.
- c) Montrer que les termes d'indice pair forment une suite convergente .dont on déterminera la limite.
- d) Montrer que les termes d'indice impair forment une suite convergente.
- 3) Déduire de ce qui précède le comportement de la suite (U_n) .

EXERCICE: II

Les parties A et B sont indépendantes.

Soit ABC un triangle dont les 3 angles sont aigus

- A) On se propose de déterminer les points P,Q et R appartenant respectivement à [BC], [AC] et [AB] tels que le périmètre du triangle PQR soit minimum.
 - 1) On désigne par A',B' et C' les pieds des hauteurs du triangle ABC, issues de A,B et C.

Démontrer que les droites (AA'); (BB') et (CC') sont les bissectrices du triangle A'B'C'

2) Soit P un point de [BC], on pose $(\overrightarrow{AB}, \overrightarrow{AC})_{-} = \alpha$ et on désigne par P' le symétrique de P par

rapport à la droite (AB) et P'' le symétrique de P par rapport à la droite (AC).

- a) Démontrer que P'' est l'image de P' par une rotation dont on précisera les éléments caractéristiques.
- b) Exprimer P'P' en fonction de AP et α. {On pourra utiliser le triangle A P'P'.}
- c) Comment choisir P pour que P'P'' soit minimum?
- 3) On suppose que P est ainsi choisi

Justifier que si $Q \in [AC]$, $R \in [AB]$ et p le périmètre du triangle P, Q R, alors P'P'' $\leq p$.

- 4) En déduire que PQR a un périmètre minimum lorsque P,Q et R sont les pieds des hauteurs du triangle ABC.
- B) ABC est un triangle quelconque, on choisit P, un point intérieur. Le point P se projette orthogonalement sur les droites (BC), (AC) et (AB) respectivement en H_A, H_B et H_C.

Trouvez tous les points P tels que :

$$\frac{BC}{PH_A} + \frac{CA}{PH_B} + \frac{AB}{PH_C} \text{ est minimale (On pourra utiliser la fonction } u \to \frac{u^2 + 1}{u} \text{)}$$

CLASSES DE PREMIERE

PROBLEME

Soit $(a, b) \in \land x \mid^*$; il existe un unique couple (q, r) appartenant à \land^2 tel que a = b q + r avec $0 \le r < b$.

r est le reste et q le quotient dans la division euclidienne de a par b.

Soit $n \in [n]$, on définit la relation dans $n \in [n]$ de la manière suivante : $n \in [n]$ de $n \in [n]$ de n

$$x \not P y \Leftrightarrow x - y \notin n \land.$$

 $x P y \text{ sera not} \notin x \equiv y(n)$
(On lit x est congru à y modulo n)

- 1) Démontrer que si $x \equiv y(n)$ alors x et y ont même reste dans la division euclidienne par n.
- 2) Montrer que P est une relation d'équivalence autrement dit
- * x P x
- * $x P y \Rightarrow y P x$
- * $x P y et y P z \Rightarrow x P z$.
- 3) Soit $x \in A$, on appelle classe d'équivalence de x, par P, l'ensemble noté x et défini par :

$$\begin{array}{l}
\bullet \\
x = \{ y \in \land / x \equiv y (n) \} \\
\end{array}$$

Ainsi: si x P y alors x = y

- a) Montrer que si x \not y alors $x \neq y$ (on pourra montrer que $x \cap y = \phi$)
- **b**) Montrer $U \stackrel{\bullet}{x \in \land} = \land$

On rappelle que $U \stackrel{\bullet}{x}$ représente la réunion des classes de $x, x \in A$

- c) Montrer que si r est le reste dans la division euclidienne de x par n alors x = r
- 4) Soit $\land / n \land = \{ 0, 1, 2, \dots, \widehat{n-1} \}$

Justifier que $\ \ \land \ \$ n $\ \$ est l'ensemble des classes d'équivalence par la relation de congruence modulo n.

.../...3

5) a) Montrer que:

si
$$\begin{cases} x \equiv y(n) \\ x' \equiv y'(n) \end{cases} \text{alors} \qquad \begin{cases} x + x \equiv y + y'(n) \\ xx' \equiv yy'(n) \end{cases}$$

b) dans $\wedge /n \wedge$, on définit les opérations + et x

par
$$x + y = x + y$$
 (addition dans $\land / n \land$)
 $x \times y = x y$ (multiplication dans $\land / n \land$)

Donner les tables d'addition et de multiplication dans $\wedge / 4 \wedge$ et $\wedge / 5 \wedge$

Exemple de table : Soit $Z_2 = \{ x_1, x_2 \} \subset \land$ La table d'addition dans Z_2 est donné par

+	\mathbf{x}_1	X2
\mathbf{x}_1	$x_1 + x_1$	$x_1 + x_2$
\mathbf{x}_2	$x_2 + x_1$	$x_2 + x_2$

c) c1) Montrer que, dans $\wedge / n \wedge$

- * + est une loi de composition interne
- * + est commutative, associative
- * Il existe un élément neutre par +
- * Tout élément de ^/n ^ admet un symétrique.

On dit alors que $(\land / n \land ; +)$ est un groupe commutatif.

c2) Montrer que, dans $\ \wedge \ / \ n \ \wedge$

- * × est distributive par rapport à +
- * × admet un élément neutre .
- * × est commutative et associative

On dit que $(\land / n \land, +, \times)$ est un anneau commutatif unitaire.

6) <u>Application</u>

a) En utilisant les tables d'addition et de multiplication de \land / $4\land$, résoudre dans (\land / $4\land$) ×(\land / $4\land$,) le système suivant :

$$\begin{cases} 2x + 3y = 2 \\ 2x + 1y = 2 \end{cases}$$

MATHEMATIQUES

4/4

../...4 04 1CGS 01 01

CLASSES DE PREMIERE

c)
$$-x$$
 désigne $-x$, pour $x \in \land$

Résoudre les équations $x^2 - 2x + 1 = 0$ et $x^2 - 2x - 7 = 0$

$$C_1$$
) * dans \wedge / 3 \wedge ,

$$C_2$$
) * dans $\wedge / 5 \wedge$,

BAREME

1) 0,25+0,25

c)
$$0.75 + 0.25$$

EXERCICE I (03points)

3) 00,5 points

EXERCICE II (07points)

- **A**/ 05,5 points
- **1**) 01,5
- **2)** a) 01 b) 01
 - c) 0,5
- **3**) 01
- 4) 0,5
- **B** / 01,5

PROBLEME (10 points)

- **1**) 01
- **2**) 0,5
- **3**) a) 0,5
 - b) 0,5
 - c) 0,5
- **4**) 0,75
- **5**) a) 0,5
 - b) 0,5
 - c) c1) 01,5
 - c2) 01
- **6**) a) 01
 - b) 01
 - c) c1) 0,5
 - c2) 0,25