

Université Cheikh Anta Diop de Dakar □□◆□□

OFFICE DU BACCALAUREAT

Téléfax (221) 864 67 39 - Tél. : 824 95 92 - 824 65 81

13 G 26 B R Durée : 2 heures Séries : S2-S2A-S4-S5 – Coef. 5

Epreuve du 2ème groupe

MATHEMATIQUES

EXERCICE 1

(10 points)

Questionnaire à Choix Multiples

Dans chacun des 5 cas ci-dessous, une seule des trois déclarations A, B et C est vraie.

Recopier la et justifier votre choix. (02 pts + 02 pts + 02 pts + 02 pts + 02 pts)

- 1) L'équation différentielle : y" + 4 y' + 5 y = 0 admet pour solution générale φ telle que :
 - A) $\varphi(x) = \lambda e^{x} + \mu e^{-2x}$, $(\lambda, \mu) \in \mathbb{R}^{2}$, $x \in \mathbb{R}$.
 - B) $\varphi(x) = (\lambda \cos x + \mu \sin x) e^{-2x}$, $(\lambda, \mu) \in \mathbb{R}^2$, $x \in \mathbb{R}$.
 - C) $\varphi(x) = [\lambda \cos(-2x) + \mu \sin(-2x)] e^x$, $(\lambda, \mu) \in \mathbb{R}^2$, $x \in \mathbb{R}$.
- Si (u_n)_{n∈IN} est une suite strictement croissante de premier terme -12 et est majorée par 4, alors :
 - A) (u_n)_{n∈IN} est convergente.
 - B) $(u_n)_{n \in IN}$ converge vers -12.
 - C) (u_n)_{n∈IN} converge vers 4.
- 3) L'intégrale I = $\int_0^1 \sin(\pi x) dx$ est égale à :
 - A) 2π.
 - B) $\frac{2}{\pi}$
 - C) $\frac{1}{2\pi}$.
- 4) La courbe représentative de la fonction $f: x \mapsto x^3 3x + 4$, $x \in IR$ dans un repère orthonormal, admet Ω comme point d'inflexion:
 - A) Ω (0; 4).
 - B) Ω (0; -3).
 - C) Ω (1; 2).
- 5) On tire simultanément cinq cartes d'un jeu de trente-deux cartes, ce qui forme « une main ». Quel est le nombre de mains possibles ?
 - A) $C_{32}^5 = 201376$
 - B) $A_{32}^5 = 24\ 165\ 120$
 - C) $(32)^5 = 33554432$

EXERCICE 2 (04 points)

- 1) a) Résoudre dans c, l'ensemble des nombres complexes, l'équation suivante : $z^2 2\sqrt{2}z + 3 = 0$ (01 pc
 - b) On note a, la solution dont la partie imaginaire est positive et b l'autre solution. Ecrire c = - a + b sous forme exponentielle. (0,5 point)

.../... 2

13 G 26 B R Série: S2-S2A S4-S5

Epreuve du 2ème groupe

2) Soit f l'application de c dans c définie par : f (z) = z $e^{i\pi/2}$ ·

a) Calculer f(a), f(b) et f(c). Exprimer les sous forme algébrique.

(01,5 point)

b) Préciser la nature de l'application du plan 9 dans 9 qui, à tout point M d'affixe z associe le point M' d'affixe z' tel que f(z) = z'. (01 point)

EXERCICE 3

(06 points)

On considère la fonction numérique g définie par :

$$g(x) = e^{x} - x - 1, \text{ si } x < 0, g(x) = 0, \text{ si } x = 0, g(x) = x \ln(x + 1), \text{ si } x > 0.$$

1) Déterminer l'ensemble de définition de g.

(0,5 point)

2) Etudier les limites de g en -∞, en 0 et en +∞, g est-elle continue en 0 ? (01,5 point)

(01,5 point) 3) Calculer g'(x) sur chacun des intervalles]- ∞ ; 0[et]0; + ∞ [.

(01,5 point) 4) Etudier la limite de g' en 0. La fonction g est-elle dérivable en 0 ? (0,5 point)

5) a) Déterminer le signe de g'.

(0,5 point) b) Dresser le tableau de variation de g.